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Small Satellite Propulsion Options
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Advanced chemical and low power electric propulsion offer attractive options for small satellite propulsion.

Applications include orbit raising, orbit maintenance, attitude control, repositioning, and deorbit of both Earth-space
and planetary spacecraft. Potential propulsion technologies for these functions include high pressure It/Re
bipropellant engines, very low power arcjets, Hall thrusters, and pulsed plasma thrusters, all of which have been shown
to operate in manners consistent with currently planned small satellites. Mission analyses show that insertion of
advanced propulsion technologies enables and/or greatly enhances many planned small satellite missions. Examples of
commercial, DoD, and NASA missions are provided to illustrate the potential benefits of using advanced propulsion
options on small satellites.

Introduction

The current emphasis on cost reduction and spacecraft
downsizing has forced a reevaluation of technologies

with critical impact on spacecraft mass. For many
commercial, scientific, and DoD near-Earth missions,

on-board propulsion is the predominant spacecraft mass.
Therefore, high performance propulsion systems offer
substantial leverage for reducing injected mass
requirements. Additional issues resulting from the
emphases on use of smaller launch vehicles, new
spacecraft architectures, and the costs associated with
ground testing arid handling toxic or hypergolic

propellants have also led to the consideration of
alternative propulsion technologies.

Small spacecraft require propulsion for a widerange of
on-orbit functions, including orbit raising and
adjustment, drag make-up and stationkeeping, sun-
synchronous orbit maintenance, and satellite orientation
control. In addition, new communications and remote
sensing markets and requirements for constellation
maintenance and deorbit are emerging which will
increase propulsion requirements for small satellites.
This diverse set of propulsion functions results in a

wide range of propulsion requirements. Figure 1 shows
the total impulse required by a number of planned
NASA, DoD, and commercial small spacecraft. The

values range from a low of 1.4 x 104 N-s for the HETE

spacecraft 1 to a high of 2.5 x 106 N-s for the Vesta

asteroid rendezvous mission. 2 Commercial spacecraft,

not identified by name in the figure because of their
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proprietary nature, also require a wide range of total
impulses. These propulsion requirements result in the
typical small satellite mass breakouts shown in Fig. 2.
For all cases shown the propulsion system wet mass is
the largest mass spacecraft subsystem, and thus
improvements in this subsystem have potential for

large satellite mass reductions.

On-board propulsion options include both advanced

chemical and electric propulsion technologies.
Advanced chemical engines, using nitrogen tetroxide
with either monomethyl hydrazine or hydrazine
propellants and liquid oxygen with hydrazine propellant,
have been successfully tested using high temperature
It/Re combustion chambers at thrust levels between 5

apd 400 N. 3 A new effort is underway to reduce the

engine volume now required to achieve specific
impulses between 320 and 350 s. This effort is directed
at developing high pressure chemical rocket systems,
and includes propellant feed system, pump, and
combustion chamber technologies.

Near-term electric propulsion options for small, power
limited spacecraft include very low power arcjets, Hall
thrusters, and pulsed plasma thrusters (PPTs). While
the planned spacecraft power range, shown in Fig. 3, is
quite large, there is a clear need for electric propulsion
systems requiring less than 500 W of power. 1.8 kW
arcjets are currently flying on AT&T's Telstar 401

satellite, and arcjets have been successfully operated at
power levels below 100 W. However, arcjet

performance was found to degrade substantially at power
levels below 400 W. 4 Hall thrusters have been flown



on over 60 Soviet and Russian spacecraft. 5 PPTs,

which use solid cloroflourocarbon propellant, have been

operational on several spacecraft for over 20 years. 6
PPTs have several unique features which make them
attractive for small satellite missions, including

simplicity, use of inert, non-toxic propellants, and the
ability to operate over a wide input power range at

constant performance via changes in pulse frequency. 6

The renewed emphasis on small, power- and volume-
limited spacecraft has opened up a series of
opportunities for application of advanced on-board

propulsion technologies. Results of the study
presented in this paper show that significant
improvements in payload mass, reduced spacecraft mass
and volume, and enhanced mission capabilities can be
achieved by replacing the current propulsion systems
with new high performance chemical or electric
systems. This paper reviews the status of these small
satellite propulsion options, and provides examples of
commercial, DoD, and NASA missions for which

advanced propulsion offers significant benefits.

Propulsion Options

Advanced Chemical Rockets

Low thrust chemical rockets are currently used on
almost all space missions, and development of both
Earth-storable and space-storable concepts is

continuing. 3 Earth-storable propellants include

nitrogen tetroxide as an oxidizer, with monomethyl
hydrazine or anhydrous hydrazine as fuels. Space
storable propellants include liquid oxygen as an oxidizer

with hydrazine or nontoxic hydrocarbons, such as liquid
methane, ethane, and ethanol, as fuels. Rocket

chambers are presently fabricated from niobium (C-103)
with a fused silica coating (R-512A or R-512E) for
oxidation protection. Improved performance and
lifetime for small chemical rockets are sought through
the introduction of higher temperature materials to
eliminate fuel-film cooling and its associated

combustion inefficiency, and improved component
designs to optimize performance and reduce system
mass and volume. Elimination of fuel-film cooling also
reduces spacecraft contamination issues. The most

promising material under development is iridium-coated
rhenium. Component tests of designs optimizing
performance have indicated that gains of 10 to 20 s

specific impulse lisp) are possible with Earth-storable

propellants. Further gains of 5 to 10 s Isp are expected
with designs which operate at high chamber pressure
such that frozen flow losses in the nozzle are

minimized. Components designed for space-storable

propellants are expected to provide an additional 15 to

20 s Isp over Earth-storables due to the more energetic
nature of these propellants.

Performance and life tests of 22, 62, and 440 N thrust

class rockets using It/Re chambers have been conducted
with both nitrogen tetroxide/monomethyl hydrazine and

nitrogen tetroxidelhydrazine propellants. 7,8 Both

steady-state and pulsed testing were performed, and
thermal management issues were successfully addressed.
Performance and life results are shown in Table 1.

High pressure chemical systems have been developed
recently for short-lived DoD missions. NASA is
sponsoring a program to develop long-lived systems
which will leverage advances made in DoD and

industrial programs. High pressure tests of small
rockets will be used to determine their combustion

chamber efficiency when designed with high temperature
materials. These materials may offer the thermal
margin necessary to withstand the increased heat fluxes
associated with high pressure rocket chambers, without
paying a performance penalty for film cooling.
Operation at high pressure also allows a reduction in
size of rockets, which is potentially of value to small
satellites.

Recent efforts to improve the performance of small
chemical rockets have focused the use of the more

energetic space storable propellants. These propellants
can be passively stored in space, within mission
constraints, without active cooling or refrigeration.
Based on system analysis, liquid oxygen and hydrazine
were chosen for rocket development at TRW using their

pintle injector design. Tests to date have produced a

maximum Isp of 350 seconds based on 200:1 area ratio

nozzle. 9,10 In addition, a facility is under construction

at NASA's Lewis Research Center to test liquid
oxygen/hydrocarbons to explore nontoxic propellant

options.

The chemical propulsion options anticipated for small
satellites and their estimated performance are given in
Table 2. Component masses used in the analysis are

given in Table 3. Tank masses were derived from an

empirical relationship 11 using the operating pressure

given in Table 2. The pressurant tank was assumed to

be fiber overwrapped and to operate at 3.44 x 107 Pa

(5000 psia). Vendor data indicated that overwrapped
tanks were half the weight of state-of-art tanks. Many

of the other state-of-art component masses are also
given in Ref. 11. The lightweight component masses
were obtained from commercial vendors. Typical
monopropellant and bipropellant propulsion systems
dry masses were derived for comparative analysis using
these data and the system schematic shown in Fig. 4.
The results are summarized in Table 4, and were used in

the mission analyses presented below.



Very Low Power Arcjets
A highly simplified schematic of an arcjet thruster
system is shown in Fig. 5. In operation, an arc is
initiated between the cathode and the converging secion
of the anode and is forced by the propellant flow
through the throat to seat diffusely in the diverging
section of the nozzle which also functions as the anode

of the device. The arcjet electrodes are made from
tungsten alloys. Current arcjets use hydrazine

propellant so as to be compatible with flight qualified
propellant feed systems, and the propellant is passed
through a catalyst decomposition bed before entering the
thruster. The arcjet power processing unit (PPU) must
ignite the discharge and reliably operate the thruster in
both the period of transition immediately following
startup and in the steady state mode. Operating voltages

are on the order of 100 V. 12,13 Flight arcjets have

been built for power levels of 1.4 and 1.8 kW, and
current development efforts are focused on both

increasing the Isp to 600 s at 2.0 kW and decreasing the
operating power level to between 400 and 800 W.
Typical thruster performance during steady-state
operation at power levels between 400 and 800 W

ranges from 26 to 41 percent efficiency at between 320

and 530 s Isp.

For the mission analyses presented below the arcjets
were assumed to operate at 500 W. The arcjet mass,

including the catalyst bed, controller, and structure, was
set to 1.0 kg, and the PPU efficiency and mass were 90
% and 1.6 kg, respectively. An additional 1.44 kg was
assessed to each thruster/PPU set to account for feed

system, cabling, and thermal control The hydrazine
tankage fraction was taken as 7 %, which is typical of

dual-mode propulsion systems. 14 Dry mass

contingencies were set to 15 %, which is consistent
with the high state of development of flight arcjets.

Hall Thrusters

A simplified schematic of a Hall thruster system is
shown in Fig. 6. Briefly, xenon propellant is ionized
in the chamber and then accelerated by an axial
electrostatic field created by a radial magnetic field
which retards the flow of electrons from the external

hollow cathode to the anode. While only a single

power supply is required in steady-state, thruster
ignition requires additional power supplies to preheat
the cathode and ignite the discharge. The PPU sequences
the power supplies properly to ignite the thruster and

transition to steady-state operation. 15,16 The discharge

supply is a voltage-regulated power supply connected to
the thruster anode and cathode through the
electromagnet. In this configuration, the discharge
current excites the electromagnet, setting up the radial
magnetic field. The discharge current is a function of
xenon flow through the thruster, and the PPU maintains

closed loop flow control by regulating the discharge

current. At the nominal 700 W operating point, the
discharge supply output voltage is 300 VDC and the
discharge current is about 2.5 A. The cathode heater

power supply produces a 12 ADC current at a

maximum voltage of 8 VDC. Both breadboard 15 and

flight-like power processors 16 have been developed and
successfully integrated with 1.4 kW Hall thrusters in
theU. S.

Hall thrusters operating at 700 W have been flight

qualified in Russia. 17 The nominal operating point for

this system is 1600 s Isp and 50 % efficiency. For the
mission analyses, the Hall thruster and PPU weights
were set to 7.1 kg and 5.7 kg, respectively. Note the
thruster mass includes controller and structure. An

additional mass of 1.2 kg was assessed to each
thruster/PPU set to account for the feed system,
cabling, and thermal control. The xenon propellant
tankage fraction was taken to be 15%, and 30%
contingency was used on the propulsion system dry
mass.

Pulsed Plasma Thrusters

Pulsed plasma thrusters rely on the Lorentz force

generated by an arc passing from anode to cathode and
the self-induced magnetic fields to accelerate a small

quantity of cloroflourocarbon propellant. 6 Thruster Isp

ranges from 300 to 2000 s, depending on the thruster

geometry, operating condition, and propellant choice. 6

Operational PPT power levels range from 5 to 30 W,

though they have been extensively tested at 150 W. 18

Pulsed electromagnetic thruster systems consist of the
accelerating electrodes, energy storage unit, power
conditioning unit, ignitor supply, and propellant feed
system. A typical PPT system schematic is shown in
Fig. 7. During operation, the energy storage capacitor
is first charged to between 1 and 2 kV, and the ignition

supply is then activated to generate a low density
plasma which permits the energy storage capacitor to
discharge across the face of the cloroflourocarbon
propellant bar. The peak arc current level is typically
between 2 and 15 kA, and the arc duration is between 5

and 20 psec. 18 The pulse cycle can be repeated at a rate

compatible with the available spacecraft power, and

typical missions require over 107 pulses. 19 The

propellant feed system consists of a negator spring
which pushes the solid cloroflourocarbon bar against a
stop on the anode electrode. The ability to use the same
thruster over a wide range of spacecraft power levels
without sacrificing performance is one of the advantages

of pulsed thrusters.

Flight PPT systems were developed and flown between
1964 and 1982. Typical flight unit power conditioner

efficiencies were near 85 %,18 yielding system

efficiencies between 6 and 13 % depending on the



discharge energy level. A flight qualified 30 W PPT
system, including the PPU, controls, structure, thermal
control, and the propellant storage and feed system, was

built in 1974 with a dry mass of 5.85 kg. 18 While no
new PPT technology work has been done since

approximately 1975, a new NASA effort has been
initiated to bring these systems to current state-of-art in
electronics, energy storage, and propellant technologies.
For this study the PPT efficiency was assumed to be 15

% at 1000 s Isp. The thruster system dry mass was 4.5
kg, and 30 % contingency was used.

Mission Analysis

Mission analyses were performed using a spreadsheet

code called Solar Electric Propulsion Spacecraft System
and Mission Analyzer (SEPSSMA). This code permits
parametric modelling of the spacecraft and mission to

establish the final spacecraft mass as a function of
thrusting time. The code can also evaluate specific
mission scenarios assuming spacecraft mass, power, and
full power thrust time. This study included the effects
of both atmospheric drag and shading, and neglected
array degradation.

The parametric portion of the code models the power
and propulsion systems using a specific-mass/power-

level combination. 20 The Edelbaum velocity increment

of an orbital maneuver was used. 21 The delivered mass,

excluding the power and propulsion systems, was
calculated as a function of thrusting time to allow the
user to find the thrusting time yielding the desired net

mass/trip time combination. The Isp maximizing the
net mass for the input thrust time was determined

analytically. 20

For a specific mission analysis, system inputs such as
launch mass, support system masses, contingency, etc.
could be varied. The mission model used '_aiytical'
steps to assess shading, radiation fluence, and
atmospheric drag over the mission. Extra thruster
systems were added if their lifetime, which was input by
the user, was exceeded.

The analytical trajectory used in SEPSSMA is

simplified and does not provide optimal trajectories.
Comparisons of selected cases with results from the
numerical optimizer SECKSPOT show the deviation is
insignificant for the purposes of this study. The

calculations assumed that the orbit was quasi-circular
during the transfer, that the thrust magnitude and angle
were constant during each revolution, and that the
thrust-to-weight ratio was 0.01 or less. The model also
assumed that the shading caused by the Earth was
cylindrical, calculated drag using a 1992 average
atmosphere calculated using the results in Ref. 22 with

solar panels always perpendicular to velocity (worst case
drag), and the radiation model used 45 ° inclination

fluence data. 23 Data for silicon solar array cells were

used for all spacecraft. Finally, the impacts on the
attitude control system were not assessed.

Small Satellite Missions

Four missions were selected to illustrate the capabilities
of advanced propulsion for small satellites. These were
orbit raising and maintenance for a 70 kg class LEO

commercial spacecraft, orbit raising and stationkeeping
for DoD Tactical Satellites (TACSATs), orbit raising
and deorbit for NASA's Total Ozone Mapping
Spectrometer - Earth Probe (TOMS-EP), and planetary
AV maneuvers for NASA's Mars Upper Atmosphere
Dynamics, Energetics, and Evolution (MAUDEE)
spacecraft. For each case the minimum spacecraft
modifications possible were made to accommodate the
new propulsion system.

Commercial LEO Small Spacecraft
These spacecraft include small communications and

remote sensing platforms ranging in mass from 60 to

100 kg. 24 These spacecraft, which would be launched

on Pegasus class launch vehicles, have power levels
ranging from 50 to 300 W. The very low power
requirements of PPTs make them the only suitable
electric propulsion candidate for this class of very small
satellite. For this analysis a constant 240 W of power
(except in shadow) was baselined for the two PPTs
placed on each spacecraft. Table 5 compares the number
of 68 kg spacecraft which could be launched using a
Pegasus XL if each used PPTs or a hydrazine auxiliary

propulsion system (HAPS) final stage. By accepting
trip times on the order of a few months, it was found
that the PPTs could raise the satellite orbit and greatly
increase useable payload compared to that delivered
directly by the Pegasus launch vehicle. As shown in

the table, using the PPTs permits launch of four
spacecraft per launch vehicle to any altitude below 3000
kin, and substantially increased the mass margin over
that ob_ned using the HAPS stage. The HAPS upper
stage could only launch a single spacecraft to a final

orbit of 3000 kin. These benefits could yield
significant launch cost reductions for some missions.

Similarly, maintaining a 100 kg spacecraft in an
accurate sun-synchronous orbit for 5 years requires a

total PPT system wet mass of 8 kg and a power
consumption of 2.5 W. This compares to a propulsion
system wet mass of 24 kg for a monopropellant
hydrazine system, yielding a savings of 16 kg per
satellite. As with the orbit raising mission, this mass
savings could be especially significant for cases in
which multiple satellites will be launched on a single



launchvehicle,ashas been proposed for several LEO
constellations.

Communication TACSATs/DoD

Tactical Satellites were introduced by Rosen 25 to

satisfy the DoDs need for small, capable spacecraft that
can be rapidly deployed. A geosynchronous (GEt)
communication TACSAT was proposed which would
perform backup duties for DSCS III. The projected

GEt beginning-of-life mass and lifetime were 455 kg
and 10 years, respectively. The satellite would also
have a rapid on-orbit repositioning capability to permit
rapid response or to provide a larger coverage area. The
proposed TACSAT payload would consist of two 40 W
DSCS III transponders. This study assumed that the
station keeping 'box' was 0.1 ° wide and that two 90 °
repositions were required per year for the ten year life.
The duration of each repositioning maneuver was two
weeks.

Both electric and advanced chemical thrusters can be

used to augment the TACSAT capabilities. Assuming
the TACSAT is three-axis stabilized and has a payload

power level of 1.5 kW, either hydrazine arcjets or xenon
Hall thrusters could be added to the satellite to perform
the north/south (NSSK) and east/west station keeping
(EWSK) as well as to provide rapid on-orbit

repositioning. The arcjet configuration assumed that
eight 500 W arcjets could be placed on the satellite, two
on each east/west face and two on each north/south face,

canted 17 ° to avoid plume impingement of the arrays.
Only four 700 W Hall thrusters would be placed on the
satellite, two on each north/south side canted 45 ° to

avoid plume impingement of the arrays. The thrusters
would operate in pairs on each face. Four PPUs would

provide thruster power. Existing geostationary guidance,
navigation, and control would be reconfigured to allow
for daily NSSK/EWSK burns and repositioning spirals.
Battery power would be used to power the thrusters for

NSSK/EWSK burns to enable constant
communications payload operations. The payload was

assumed inactive during reposition thrusting.

The benefits of advanced propulsion for this spacecraft
were evaluated in two ways. First, use of electric

propulsion for NSSK, EWSK, and repositioning was
examined assuming that the initial GTO spacecraft mass

was kept constant. For this case, any benefit resulting
from reduction of the baseline propulsion system wet
mass would be used to augment the payload or increase
the spacecraft lifetime. The latter would be achieved by
increasing the propellant load beyond that needed for the
10 year life. For this scenario, the initial propulsion
system wet masses of the arcjet and Hall thruster
equipped communications TACSAT were found to be
140 kg and 130 kg, respectively. This compared with a

state-of-art bipropellant repositioning/station keeping

fuel mass of 200 kg (assuming 310 s Isp chemical

thrusters for repositioning and 285 s Isp thrusters for

station keeping26). Thus, the propulsion system mass
savings resulting from use of arcjets or Hall thrusters
were 60 kg and 70 kg, respectively, which could be used

to either increase the payload or the spacecraft lifetime,
since the initial wet mass was kept constant. Note that
the chemical system dry mass and attitude control
propellant were left intact for this analysis.

The second benefits analysis incorporated both electric

propulsion for stationkeeping and repositioning and the
use of advanced chemical propulsion systems
(lightweight or pump fed It/Re bipropellant) for the
apogee insertion. The benefits for these cases were
established using the TACSAT characteristics given
above, but instead of keeping the initial GTO mass
constant the benefits of using advanced propulsion were
calculated in terms of reduced GTO mass. This reduced

mass could be used either to reduce the required Launch
vehicle size or increase the payload mass.

Figure 8 shows the required initial GTO mass for each
combination of electric and advanced chemical thruster.

Electric propulsion station keeping and repositioning
reduces the GTO mass by approximately 100 kg. By

adding advanced chemical systems for apogee insertion,
a total mass reduction of 200 kg or more may be
achieved. While the Hall thruster option is best with
both the S.O.A. and lightweight bipropellant apogee

engines, the spacecraft mass is reduced sufficiently with
the pump-fed bipropellant engine that the arcjets lower
dry mass yields the lowest mass spacecraft. In terms of
launch vehicles, the baseline chemical propulsion
TACSAT fits in the Delta 7920 launch vehicle (1300

kg to GTO27). Adding electric propulsion would allow

use of the Delta 6920 (900 kg to GTO27). While
Taurus and Pegasus do not have the GTO capability
required (125 kg and 375 kg, respectively) development
of a launch vehicle with capabilities between the Taurus
and Delta classes would permit significant savings if

electric and advanced chemical propulsion are utilized by
TACSAT class spacecraft.

TOMS-EP/NASA

The TOMS-EP spacecraft is directed at measuring the

characteristics of the Earth's ozone layer. 28 The

baseline mission is to be launched using a Pegasus XL

into a 275 x 350 kin orbit which is then raised using
the Orbit Adjust System to a sun synchronous circular
orbit at an altitude of 955 kin. The fixed solar arrays
are sized to provide a maximum of approximately 500
W while not in shadow. The low available power
limits the electric propulsion system options to PPTs.

For this mission several operational and system
modifications would be necessary for using PPTs. To



ensuresufficientpowerfor thrusteroperation,the500
W arrayswould need ta be rotated about their axis
during the transfer instead of being fixed. In addition,
sufficient chemical propellant was kept to raise the
initial orbit to a 400 kin circular x 99.3* inclination

parking orbit and perform all the baseline mission's
attitude control thrusting. The 400 k.m altitude was
selected to ensure that drag did not exceed one sixth of

the thrust. The orbit's right ascension was chosen so
that the TOMS spacecraft arrived in the final sun
synchronous orbit with the proper ascending orbit
crossing between 11 a.m. and noon local solar time
after the 80 day transfer. Thus, the right ascending node
of the parking orbit is 91.2" behind the desired initial
sun synchronous ascending node. This results in
almost direct solar illumination of the solar arrays for

the entire transfer, assuming the arrays are rotated.

For this analysis, the final orbit and the masses of all
spacecraft subsystems except propulsion were fixed.
Four 200 W PPTs were placed on the spacecraft to
replace the existing Orbit Adjust System. The assumed
PPT power level is 50 W higher than the 150 W for

which extensive testing has been performed. To
complete the planned TOMS-EP mission, the PPTs

would be placed in pairs on the sides of the spacecraft
pointing through the center of mass. One set of

thrusters would perform the transfer while both sets
would alternate to circularize the final orbit. This

configuration preserves the normal attitude control setup
planned for TOMS-EP. By keeping the payload pointed
in the nadir direction the PPT thrusters would always be

pointed in a circumferential direction (perpendicular to
the radius vector and in the orbit plane), which closely
optimizes thrusting and greatly simplifies the guidance,
navigation, and control requirements. On arrival at the
final altitude the orbital eccentricity would be removed
with either the chemical or PPT system similar to the
original TOMS mission.

Results of the mission analysis are shown in Table 6.
Using PPTs increases the baseline payload from 35 kg

to 55 kg, an increase of nearly 60 %. The total transfer
time is 107 days, of which 79 days are spent thrusting.

No other orbit maintenance is required for the TOMS
mission, though additional maneuvers such as
repositioning, orbit raising, and deorbit are possible for
a relatively small amount of additional PPT fuel.

While the deorbit is not provided for in the baseline
TOMS mission, new NASA guidelines require that all
spacecraft below 2000 km must end their mission with

a perigee of 500 km or less to ensure a timely deorbit

disposal of the spacecraft. 29 If the baseline chemical

TOMS spacecraft were required to change its perigee to
500 kin, an additional 12 kg of fuel (an impulsive

maneuver of 120 m/s at 220 s Isp) would be required
which would reduce the useable payload to only 23 kg.

For the PPT equipped spacecraft only an additional 4.1
kg of fuel would be needed to spiral down to a 500 km
circular orbit, which still leaves a payload mass of 51

kg. Thus, even with deorbit, PPTs provide for 16 kg
(46 %) extra payload over the baseline mission without
deorbit. With full power the deorbit transfer would

require 52 days including shadow time (38 days of
thrusting). Table 7 presents the results of the baseline

TOMS-EP mission with a deorbit requirement and the
benefits gained by using the PPTs.

Mars Orbiter

The MUADEE 30 Discovery class mission was used to

illustrate the benefits of using advanced chemical
engines for planetary missions. The MUADEE

spacecraft is a simple spinner design based on the
Pioneer Venus spacecraft. MUADEE will explore and
sample Mars' upper atmosphere by flying through it.

While several launch opportunities exist for MUADEE,
this study used the baseline launch date of 04/08/01.
The Mars-capture AV was assumed to be 1472 m/s to

insert MUADEE into a 40,000 km by 600 lan orbit.
The periapsis would then be lowered to -130 kan (23.3
m/s AV) to begin science operations. Both of these
maneuvers (a total of 1495.3 m/s AV) would to be

performed by the bipropellant system.

The baseline bipropeUant system which performs the
Mars insertion and orbit acquisition consists of three

canted 410 N thrusters at 300 s Isp. Other small AV

maneuvers are performed by 220 s Isp small thrusters.

Assuming a 90% efficiency and the 300 s Isp, the
baseline science payload for MUADEE is 49 kg. By
removing the baseline Mars capture engines and
replacing them with equivalent thrust level advanced
engines (lightweight and pump-fed Is/Re bipropellant)
the capture and initial orbit maneuver fuel may be

reduced significantly. Electric propulsion options were
not considered for the Mars orbit maneuvers because

they did not provide significant benefits for the very
small AVs required. The resulting spacecraft mass

breakdown comparisons for the various bipropellant
options are shown in Fig. 9. The substitution of the
lightweight and the pump fed I.r/Re chemical engines
allows for a payload enhancement of --40 kg and -80
kg, respectively. This mass could be utilized to add
science instruments, provide more maneuvering fuel,
and/or increase lifetime.

Summary

Advanced propulsion options for Earth-space and
planetary small satellites include advanced chemical

systems, very low power hydrazine arcjets, xenon Hall
thrusters, and cloroflourocarbon propellant pulsed



plasmathrusters(PPTs).Earthandspacestorable
propellantchemicalengineshavebeendemonstrated
withspecificimpulsesof330sand350s,respectively,
andeffortsto developlowvolume,lightweightIr/Re
bipropellantsystemsareunderway.Lowpowerarcjets
havebeenextensivelytestedatpowerlevelsbetween
500and800W,andyieldspecificimpulsesbetween
320and510sat26to42%efficiency.Hallthrusters
providing1600sIspat50%efficiencyhave been flight
qualified in Russia at a power level of 700 W. PPTs

providing between 1000 and 2000 s Isp at between 8
and 15 % efficiency were flight qualified in the mid-

1970's at power levels between 1 and 150 W. Current
development efforts are directed toward both bringing
the PPT power technology to today's standards and
improving PPT performance.

Four example missions were used to illustrate the
potential benefits of using advanced propulsion on
small, power limited spacecraft. These missions were
orbit raising and maintenance of 1130 kg class LEO
commercial satellites, apogee insertion, repositioning
and stationkeeping of a DoD communication TACSAT,
orbit raising and deorbit of NASA's Total Ozone
Mapping Spectrometer - Earth Probe mission, and
providing the Mars-capture AV and in-orbit
maneuvering for NASA's Mars Upper Atmosphere
Dynamics, Energetics and Evolution spacecraft. For
each case, significant mass savings were obtained using
advanced propulsion technology. While electric

propulsion increased the trip time for orbit transfer
missions, in all cases use of advanced propulsion
systems either greatly increased the payload capability,
increased the number of spacecraft per launch vehicle, or

allowed significant extensions of the spacecraft
operational lifetime.
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Table 1 Performance and life data on Ir/Re rockets.

Thrust Class,
N

22

Propellants

NTO/MMH

Area Ratio

150:1

Performance,
scc

310

Total Operating
Tune, ha"

Total Cycles

1.7 100,311
62 NTO/MMH 75:1 305 0.2 263

440 NTO/MMH 286:1 321 6.2 93

550 NTO/N2H 4 200:1 330 -

Table 2 Chemical propulsion system options.

Option

S.O.A. bipropellant
Lightweight It/Re

bipropellant

Pumped It/Re

bipropellant

Tank Pressure,

MPa (psia)

1.79 (260)
1.79 (260)

Rocket Chamber

Pressure, MPa (psia)
0.69 (100)

0.69 (100)

Specific Impulse,
$ec

315

330

0.344 (50) 2.75 (400) 345



Table3 State-of-artandadvancedchemicalpropulsionsystemcomponentmasses.

Component
Propellanttank

He tank

Axial thruster

ACS thruster

1_o valves
Manual valves

Check valves

l_nteh valves

Relief valves

Filters

Regulator
Lines and fittings

Pressure transducers

Tempemnrre transducers
Residuals

S_c_e

Contingency

He pressurant

Pump (if used)
Propellant tank (pumped)

S.O.A. Weig, bt, k_z

1.2+35.0Vp(m3)/Np *

0.6+260VHe(m3)/NHe**

Li_,htwei_,ht, k_

0.6+17.5Vp(m3)/Np

0.3+130VHe(m3)/NHe

0.26

3.36 3.36

0.21 0.21

0.15 0.04

0.08 0.02

0.16 0.02
0.04

0.45 0.02

0.050.23

0.84 0.07

2.50 2.50

0.10 0.10

0.01 0.01

0.03Vp(m 3)

10% of component mass

10% of dry mass

59.8VHe(m 3)

0.03Vp(m 3)

10% of component mass

10% of dry mass

59.8VHe(m 3)

5.80 2.30

1.2+6.7Vp(m3)/Np 0.6+3.4Vp(m3)/Np

*Np: number of propellant tanks
**NHe: number of helium tanks

Table 4 Chemical propulsion system dry masses.

Option

S.O.A. monopropellant

Lightweight monopropellant

Pumped monopmpellant

S.O.A. bipropellant

Lightweight It/Re bipropellam

Ptmaped It/Re bipropeUant

Dr,/Mass, k_

18.9+42.4Vp(m3)+315VHe(m3)

12.3+21.1Vp(m3)+157VHe(m3)

15.2+4.1Vp(m3)+157VHe(m3)

23.2+42.4Vp(m3)+315VHe(m 3)

14.3+21.1Vp(m3)+ 157VHe(m 3)

19.7+4.1Vp(m3)+157VHg(m3)



Table 5 Performance comparison of pulsed plasma thrusters and monopropellant
hydrazine thrusters for 68 kg commercial LEO spacecraft.

Initial/Final 28.50
Orbit Altitudes, km

PPT Trip Time
(with shading), days

400 / 1000 55
400 / 2000
400 / 3000

131
198

# PPT Equipped Spacecraf
per Pegasus XL* & Mass

Mar_,in
4 SIC & 51 kg

4 SIC & 31 kg
4 SIC & 19 kg,

*Assumes 68 kg spacecraft mass plus wet PPT system mass, and 240 W power available for PPTs, 1000 s Isp,
15% efficiency.

# 68 kg Spacecraft per
Pegasus XI., using HAl'S,

Upper Sta_e & Mass Mar_,_
4 SIC & 31 kg

2 S/C & 54 kg
1 S/C & 7 k_

md

Table 6 TOMS - EP baseline and PPT equipped masses without deorbit requirement.

Element

Spacecraft dry mass less payload
Chemical fuel

PPT fuel

Science payload
Total launch mass

Baseline Spacecraft Element Mass, k
197
55

35
287

PPT Version Element Mass, k_.
207
15
8.3

55
287

Table 7 TOMS-EP baseline and PPT equipped masses when deorbit to 500 km is included.

Element Baseline Spacecraft Element Mass, k PPT Version Element Mass, k_,
197 272Spacecraft dr,t mass less payload

Chemical fuel
PPT fuel

Science payload
Total launch mass

78

23
287

15
12.4

51
287

10
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